Abstract

Interleukin-27 (IL-27) is known as an anti-HIV cytokine. We have recently demonstrated that IL-27-pretreatment promotes phytohemagglutinin-stimulated CD4(+) T cells into HIV-1-resistant cells by inhibiting an uncoating step. To further characterize the function of the HIV resistant T cells, we investigated profiles of microRNA in the cells using microRNA sequencing (miRNA-seq) and assessed anti-HIV effect of the microRNAs. Phytohemagglutinin-stimulated CD4(+) T cells were treated with or without IL-27 for 3 days. MicroRNA profiles were analyzed using miRNA-seq. To assess anti-HIV effect, T cells or macrophages were transfected with synthesized microRNA mimics and then infected with HIVNL4.3 or HIVAD8. Anti-HIV effect was monitored by a p24 antigen enzyme-linked immunosorbent assay kit. interferon (IFN)-α, IFN-β, or IFN-λ production was quantified using each subtype-specific enzyme-linked immunosorbent assay kit. A comparative analysis of microRNA profiles indicated that expression of known miRNAs was not significantly changed in IL-27-treated cells compared with untreated T cells; however, a total of 15 novel microRNAs (miRTC1 ∼ miRTC15) were identified. Anti-HIV assay using overexpression of each novel microRNA revealed that 10 nM miRTC14 (GenBank accession number: MF281439) remarkably suppressed HIV infection by (99.3 ± 0.27%, n = 9) in macrophages but not in T cells. The inhibition was associated through induction of >1000 pg/mL of IFN-αs and IFN-λ1. We discovered a total of 15 novel microRNAs in T cells and characterized that miRTC14, one of the novel microRNAs, was a potent IFN-inducing anti-HIV miRNA, implicating that regulation of the expression of miRTC14 may be a potent therapeutic tool for not only HIV but also other virus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call