Abstract

This study evaluated the chemical changes in five types of whole-milk powders (WMP) with different heating loads during storage. The WMP was preheated using low-heat [low-temperature long-time (LTLT), high-temperature short-time pasteurization (HTST)] and high-heat process [ultra-pasteurization (ESL), ultra-high-temperature (UHT) treatments, and in-bottle sterilization (BS)]. Furosine increased by 2.5–3.0 times in high-heat WMP and 5.7–8.4 times in low-heat WMP during storage. 5-(hydroxymethyl)furfural (HMF) content in high-heat WMP was on average 1.4- to 2.4-fold higher than in low-heat WMP during storage. The increases in the amount of Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) in high-heat WMP were more than that in low-heat WMP (CML, 3.4–4.9 vs 3.1–3.4 times; CEL, 3.4–4.2 vs 2.7–3.0 times). Pyrraline in high-heat WMP increased by 1.8- to 2.1-fold. 2-Furaldehyde, CML, and CEL increased slowly with 12 months of storage and then accelerated. Storage time significantly contributed to more furosine, HMF, CML, and CEL contents in high-heat WMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.