Abstract

Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (OVOCs) were conducted in Xi’an. Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed. Significant seasonal differences were noted for total VOC (TVOC, NMHCs and OVOCs) concentrations and compositions. The campaign-average TVOC concentrations in winter (85.3 ± 60.6 ppbv) were almost twice those in summer (47.2 ± 31.6 ppbv). Alkanes and OVOCs were the most abundant category in winter and summer, respectively. NMHCs, but not OVOCs, had significantly higher levels on weekends than on weekdays. Total ozone formation potential was higher in summer than in winter (by 50%) because of the high concentrations of alkenes (particularly isoprene), high temperature, and high solar radiation levels in summer. The Hybrid Environmental Receptor Model (HERM) was used to conduct source apportionment for atmospheric TVOCs in winter and summer, with excellent accuracy. HERM demonstrated its suitability in a situation where only partial source profile data were available. The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an. In particular, coal and biomass burning had contributions greater than half in winter (53.4%), whereas traffic sources were prevalent in summer (53.1%). This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an; such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution (e.g., from ozone and secondary organic aerosols).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call