Abstract

The existing data mining solutions to identify risk factors associated with diseases are burdened with quite a few shortcomings. They usually use crisp partitions for numerical features and also do not use patient-specific profiles. These shortcomings create limitations for solving real problems. Discretizing a numerical feature through crisp partitions can also generate substantial partitioning errors, particularly for features whose values are closer to crisp boundaries. Since the normal range of each numerical feature varies according to the age, gender, and medical conditions of the patients, then ignoring these differences can undermine the accuracy of the extracted itemsets and rules. This paper presents a profile-based fuzzy association rule mining (PB-FARM) approach for the assessment of risk factors highly correlated with diseases. The proposed approach has three phases. Phase I involves creating profiles for patients based on their age, gender, and medical conditions, to determine a normal range of each numerical feature. Then fuzzy partitioning is done for all features (namely, numerical and categorical), and consequently, a structure, called FirstScan, is created. In Phase II, the FirstScan structure is utilized to mine for large fuzzy k-itemsets. Ultimately, in Phase III, the given k-itemsets are employed to generate fuzzy rules for associations between risk factors and diseases. To evaluate the performance of the proposed method the Z-Alizadeh Sani coronary artery disease (CAD) dataset, containing 303 records and 54 features, was used. The results show a positive correlation between typical chest pain and old age with the incidence of CAD. The comparisons made in this study showed that, firstly, the proposed algorithm has a higher partitioning accuracy than other methods, and secondly, it has a reasonably short execution time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.