Abstract

The outermost, singly ionized valence state of N-2, the X (2)Sigma(g)(+) state, is investigated in detail as a function of the photon frequency bandwidth for core excitation to the N 1s-->pi(*) resonance, where the photon frequency is tuned in between the first two vibrational levels of this bound intermediate electronic state. We find a strong, nontrivial dependence of the resulting resonant photoemission spectral profile on the monochromator function width and the frequency of its peak position. For narrow bandwidth excitation we observe a well resolved vibrational fine structure in the final electron spectrum, which for somewhat broader bandwidths gets smeared out into a continuous structure. For even broader monochromator bandwidths, it converts again into a well resolved vibrational progression. In addition, spectral features appearing below the adiabatic transition energy of the ground state of N-2(+) are observed for broadband excitation. A model taking into account the interplay of the partial scattering cross section with the spectral function is presented and applied to the X (2)Sigma(g)(+) final state of N-2(+).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call