Abstract

OBJECTIVEThis study was aimed at obtaining a profile of lipids and proteins with a paracrine function in normal and diabetic vitreous and exploring whether the profile correlates with retinal pathology.RESEARCH DESIGN AND METHODSVitreous was recovered from 47 individuals undergoing vitreoretinal surgery: 16 had nonproliferative diabetic retinopathy (NPDR), 15 had proliferative diabetic retinopathy, 7 had retinal detachments, and 9 had epiretinal membranes. Protein and lipid autacoid profiles were determined by protein arrays and mass spectrometry–based lipidomics.RESULTSVitreous lipids included lipoxygenase (LO)- and cytochrome P450 epoxygenase (CYP)-derived eicosanoids. The most prominent LO-derived eicosanoid was 5-hydroxyeicosate traenoic acid (HETE), which demonstrated a diabetes-specific increase (P = 0.027) with the highest increase in NPDR vitreous. Vitreous also contained CYP-derived epoxyeicosatrienoic acids; their levels were higher in nondiabetic than diabetic vitreous (P < 0.05). Among inflammatory, angiogenic, and angiostatic cytokines and chemokines, only vascular endothelial growth factor (VEGF) showed a significant diabetes-specific profile (P < 0.05), although a similar trend was noted for tumor necrosis factor (TNF)-α. Soluble VEGF receptors R1 and R2 were detected in all samples with lowest VEGF-R2 levels (P < 0.05) and higher ratio of VEGF to its receptors in NPDR and PDR vitreous.CONCLUSIONSThis study is the first to demonstrate diabetes-specific changes in vitreous lipid autacoids including arachidonate and docosahexanoate-derived metabolites indicating an increase in inflammatory versus anti-inflammatory lipid mediators that correlated with increased levels of inflammatory and angiogenic proteins, further supporting the notion that inflammation plays a role the pathogenesis of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call