Abstract

In 2015, the United Nations released Sustainable Development Goals aimed at improving the environment and supporting vulnerable populations around the globe (1). Among the goals are those intended to reduce energy consumption and invest in clean energy, to encourage innovation in industry and develop efficient production methods, and to promote gender equality. Over the course of her career, Cynthia Friend, the Theodore Williams Richards professor of chemistry and professor of materials science at Harvard University, has engaged in efforts that directly address these goals and several others. The first female full professor of chemistry at Harvard, Friend studies the surface chemistry of heterogeneous catalysts. Her research could help increase the efficiency of many industrial processes while decreasing the production of wasteful and harmful byproducts. With nearly one-quarter of worldwide energy use attributed to the synthesis of chemicals and fuel, her work may have a lasting impact on humans’ ability to conserve the planet’s natural resources. In her Inaugural Article (2), Friend, who was elected to the National Academy of Sciences in 2019, describes the development of a highly selective catalyst that uses palladium and silver to promote hydrogenation, a key industrial reaction that typically occurs at extremely high temperatures. Cynthia Friend. Image credit: Robert J. Madix (photographer). The daughter of World War II veterans, Friend was born and raised in southern Nebraska. Her parents supported her curiosity, and her father, while working on the family’s cars and home, taught her basic electrical and mechanical engineering. Friend says this early training “turned out to be really important as I started my career in the physical sciences.” She credits the space race of the midtwentieth century, as well as her high school’s flexible scheduling, which allowed her to pursue an independent study project, with sustaining her interest in science. Friend developed an …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.