Abstract

BackgroundNymphaea alba L. represents an interesting field of study. Flowers have antioxidant and hepatoprotective effects, rhizomes constituents showed cytotoxic activity against liver cell carcinoma, while several Nymphaea species have been reported for their hepatoprotective effects. Leaves of N. alba have not been studied before. Therefore, in this study, in-depth characterization of the leaf phytoconstituents as well as its antioxidant and hepatoprotective activities have been performed where N. alba leaf extract was evaluated as a possible therapeutic alternative in hepatic disorders.MethodsThe aqueous ethanolic extract (AEE, 70%) was investigated for its polyphenolic content identified by high-resolution electrospray ionisation mass spectrometry (HRESI-MS/MS), while the petroleum ether fraction was saponified, and the lipid profile was analysed using gas liquid chromatography (GLC) analysis and compared with reference standards. The hepatoprotective activity of two doses of the extract (100 and 200 mg/kg; P.O.) for 5 days was evaluated against CCl4-induced hepatotoxicity in male Wistar albino rats, in comparison with silymarin. Liver function tests; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT) and total bilirubin were performed. Oxidative stress parameters; malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (TAC) as well as inflammatory mediator; tumour necrosis factor (TNF)-α were detected in the liver homogenate. Histopathological examination of the liver and immunohistochemical staining of caspase-3 were performedResultsFifty-three compounds were tentatively identified for the first time in N.alba leaf extract, where ellagitannins represent the main identified constituents. Nine hydrocarbons, two sterols and eleven fatty acids were identified in the petroleum ether extract where, palmitic acid and linolenic acids represented the major saturated and unsaturated fatty acid respectively. N.alba AEE significantly improved the liver function, oxidative stress parameters as well as TNF-α in addition to the amelioration of histopathological features of the liver and a profound decrease in caspase-3 expression.ConclusionThese results shed light on the hepatoprotective effect of N. alba that is comparable with that of silymarin. The antioxidant activities of N. alba extract in addition to the inhibition of crucial inflammatory mediator, as TNF-α, might be the possible hepatoprotective mechanisms.

Highlights

  • Nymphaea alba L. represents an interesting field of study

  • Estimation of Unsaponifiable Matter (USM) and Fatty Acid Methyl Ester (FAME) Nine hydrocarbons, two sterols and eleven fatty acids were identified in N. alba aqueous ethanolic extract (AEE)

  • The percentage content of individual hydrocarbons and fatty acids are summarized in Tables 2 and 3

Read more

Summary

Introduction

Nymphaea alba L. represents an interesting field of study. Flowers have antioxidant and hepatoprotective effects, rhizomes constituents showed cytotoxic activity against liver cell carcinoma, while several Nymphaea species have been reported for their hepatoprotective effects. Exposure to CCl4 is known to result in acute hepatotoxicity in humans and experimental animals. It is widely used in scientific research as a model of hepatotoxicity and to evaluate hepatoprotective agents [2, 3]. CCl4 is converted by cytochrome P450 2E1 to trichloromethyl free radical (CCl3∙) and trichloromethylperoxy radical (CCl3OO∙) Both radicals initiate lipid peroxidation and protein deterioration with subsequent damage of the cellular membrane and leakage of intracellular enzymes into the serum. These processes eventually lead to inactivation of the calcium pump with calcium influx and subsequent liver cell death. Lipid peroxidation and damage of hepatocyte membranes initiated by CCl4 was reported to be associated with the release of inflammatory mediators such as tumour necrosis factor (TNF)-α from activated hepatic macrophages, which potentiate CCl4-induced hepatic injury [3, 4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call