Abstract
Previously, we found that the 5-HT2A receptor plays a key role in cell injury. However, the mechanism by which the 5-HT2A receptor mediates intracellular processes remains unclear. In this study, we aimed to clarify this intracellular process in hepatocyte LO2 cells and evaluate its role in CCl4-induced hepatotoxicity in mice. In vitro, both the agonist and overexpression of 5-HT2A receptor could promote 5-HT degradation by upregulating the expression of 5-HT synthases and monoamine oxidase-A (MAO-A) to cause overproduction of ROS in mitochondria. We refer to this as the activation of the 5-HT degradation system (5DS) axis, which leads to the phosphorylation of JNK, p38 MAPK, STAT3, and NF-κB; upregulation of Bax, cleaved-caspase3, and cleaved-caspase9; and downregulation of Bcl-2, followed by apoptosis and oversecretion of TNF-α and IL-1β in cells. This phenomenon could be markedly blocked by the 5-HT2A receptor antagonist, MAO-A inhibitor, or gene-silencing MAO-A. Through protein kinases C epsilon (PKCε) agonist treatment and gene silencing of the PKCε and 5-HT2A receptor, we demonstrated that the 5-HT2A receptor controls 5-HT synthases and MAO-A expression via the PKCε pathway in cells. Unexpectedly, we discovered that PKCε-mediated phosphorylation of the AKT/mTOR pathway is also a consequence of the activation of the 5DS axis. Furthermore, we confirmed that the inhibition of the 5DS axis using the 5-HT2A receptor antagonist could prevent hepatotoxicity induced by CCl4 both in vitro and in vivo, inhibiting the aforementioned signaling cascades, inflammation, and apoptosis, and that the 5DS activation area overlapped the necrotic area of mouse liver. Taken together, we revealed a 5DS axis in hepatocytes that controls the signaling cascades associated with inflammation and apoptosis and confirmed its role in CCl4-induced hepatotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.