Abstract
Varying-coefficient partially linear models are frequently used in statistical modelling, but their estimation and inference have not been systematically studied. This paper proposes a profile least-squares technique for estimating the parametric component and studies the asymptotic normality of the profile least-squares estimator. The main focus is the examination of whether the generalized likelihood technique developed by Fan et al. is applicable to the testing problem for the parametric component of semiparametric models. We introduce the profile likelihood ratio test and demonstrate that it follows an asymptotically χ2 distribution under the null hypothesis. This not only unveils a new Wilks type of phenomenon, but also provides a simple and useful method for semiparametric inferences. In addition, the Wald statistic for semiparametric models is introduced and demonstrated to possess a sampling property similar to the profile likelihood ratio statistic. A new and simple bandwidth selection technique is proposed for semiparametric inferences on partially linear models and numerical examples are presented to illustrate the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.