Abstract

Transmission bandwidths of optical fibers would be maximized if their refractive index profiles were optimally graded. However, dispersive differences between fiber material constituents make the optimal power law profile exponent α depend on wavelength. This profile dispersion effect is significant for germanium borosilicate fibers and makes their observed transmission bandwidths change by more than 300 percent within a 650-1050 nm wavelength range. Measurements are made in spectrally filtered white light from a xenon arc lamp that is sinusoidally modulated by an electrooptic crystal. Reduction of sine wave envelope intensity due to transmission in a fiber gives its baseband frequency response. The functional dependence of bandwidth on wavelength is used to diagnose whether α is larger or smaller than the optimal value which minimizes intermodal dispersion at particular wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.