Abstract

Let G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R] let dg(R/[R, R]) be the number of elements required to generate this module. Define d(R/[R, F]) similarly. By an earlier result of the first author, for a fixed G, the difference dG(R/[R, R]) − d(R/[R, F]) is independent of the choice of F and φ; here it is called the proficiency gap of G. If this gap is 0, then G is said to be proficient. It has been more usual to consider dF(R), the number of elements required to generate R as normal subgroup of F: the group G has been called efficient if F and φ can be chosen so that dF(R) = dG(R/[R, F]). An efficient group is necessarily proficient; but (though usually expressed in different terms) the converse has been an open question for some time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.