Abstract

Keloid is characterized as the fibrotic tissue resulting from the increase of fibroblast activity. Uncaria gambir (Hunter) Roxb. possesses bioactive compounds that have potential as antifibrotic agents, while the mechanism of action in keloid has not yet been elucidated. The aim of this study was to investigate the interaction of gambir bioactive compounds with keloid target proteins using an epistatic and molecular simulation approach. The known bioactive compounds of gambir targets and keloid-related protein targets were screened using databases. The network was constructed and analyzed to obtain the core protein targets. The targets were enriched to describe the Gene Ontology (GO) and pathway related to the proteins. Eleven targets were defined as the main targets of gambir bioactive compounds related to keloid disease. Gambiriin C, Isogambirine, and Procyanidin B1 were identified as the most promising compounds with the highest binding energy to transforming growth factor beta 1 (TGFβ1), AKT serine/threonine kinase 1 (AKT1), and matrix metallopeptidase 1 (MMP1) as the target proteins. GO enrichment and pathway analysis found that gambir bioactive compounds may act on keloid-related target proteins to regulate cell proliferation, migration, transcription, and signal transduction activity via profibrotic cytokine and growth factor signaling pathways. This study provides a reference for potential targets, compounds, and pathways to explain the mechanism of gambir against keloid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.