Abstract

Possessing high ionic conductivity is required to polymer-based membrane electrolytes. However, it is a challenge to evaluate the conductivity based on the structure of the polymer membrane without any measurements. We present a deep learning protocol to predict the hydroxide ion (OH-) conductivity from chemical structure information of poly (2,6-dimethyl phenylene oxide)-based anion exchange membranes (AEMs) grafting with one kind of functional cationic group. The modeling process includes data collection and feature processing, functional cationic group identification, OH- conductivity prediction and scientific law extraction. The established model achieves 99.7% of accuracy for classifying various functional cationic groups. The prediction error in OH- conductivity is ± 0.016 S/cm for quaternary ammonium based AEMs, ± 0.014 S/cm for saturated heterocyclic ammonium based ones, and ± 0.07 S/cm for those possessing imidazolium cations. The proposed protocol is powerful to assist researchers in designing the AEMs with predictable OH- conductivity, and provides a new research paradigm of the AEMs preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.