Abstract

Successful performance in long distance race requires both high efficiency and stability. Previous research has demonstrated the high running efficiency of trained runners, but no prior study quantitatively addressed their orbital stability. In this study, we evaluated the efficiency and orbital stability of 8 professional long-distance runners and compared them with those of 8 novices. We calculated the cost of transport and normalized mechanical energy to assess physiological and mechanical running efficiency, respectively. We quantified orbital stability using Floquet Multipliers, which assess how fast a system converges to a limit cycle under perturbations. Our results show that professional runners run with significantly higher physiological and mechanical efficiency but with weaker orbital stability compared to novices. This finding is consistent with the inevitable trade-off between efficiency and stability; increase in orbital stability necessitates increase in energy dissipation. We suggest that professional runners have developed the ability to exploit inertia beneficially, enabling them to achieve higher efficiency partly at the cost of sacrificing orbital stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.