Abstract

AbstractWe prove that products of at most two vector valued Eisenstein series that originate in level 1 span all spaces of cusp forms for congruence subgroups. This can be viewed as an analogue in the level aspect to a result that goes back to Rankin, and Kohnen and Zagier, which focuses on the weight aspect. The main feature of the proof are vector valued Hecke operators. We recover several classical constructions from them, including classical Hecke operators, Atkin–Lehner involutions, and oldforms. As a corollary to our main theorem, we obtain a vanishing condition for modular forms reminiscent of period relations deduced by Kohnen and Zagier in the context their previously mentioned result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.