Abstract
We consider the recursive equation x(n + 1)= A(n)⊗x(n), where x(n + 1) and x(n) are ℝk-valued vectors and A(n) is an irreducible random matrix of size k × k. The matrix-vector multiplication in the (max, +) algebra is defined by (A(n)⊗x(n))= maxj (Aij (n) + xj(n)). This type of equation can be used to represent the evolution of stochastic event graphs which include cyclic Jackson networks, some manufacturing models and models with general blocking (such as Kanban). Let us assume that the sequence {A(n), n ∈ ℕ} is i.i.d. or, more generally, stationary and ergodic. The main result of the paper states that the system couples in finite time with a unique stationary regime if and only if there exists a set of matrices such that and the matrices have a unique periodic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.