Abstract
A subgroup H of a finite group G is called F*(G)-subnormal if H is subnormal in HF*(G). We show that if a group Gis a product of two F*(G)-subnormal quasinilpotent subgroups, then G is quasinilpotent. We also study groups G = AB, where A is a nilpotent F*(G)-subnormal subgroup and B is a F*(G)-subnormal supersoluble subgroup. Particularly, we show that such groups G are soluble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.