Abstract

The well known convergence of the spectrum of large random symmetric matrices, due to Wigner, holds for products of correlated symmetric matrices with general entries. The limiting moments coincide with weighted enumeration of permutations, or of rooted trees. When the correlations are Markovian, the limiting first moments are closely related to Carlitz-Riordan q-Catalan numbers. As a consequence, these moments asymptotically exhibit a phase transition, with respect to the correlation coefficient. The critical correlations can be computed as the least positive zero of q-hypergeometric functions. Similar methods allow to recover some results due to Logan, Mazo, Odlyzko and Shepp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.