Abstract

In this work, the co-pyrolysis behavior of rice husk (RH) and oily sludge (OS) was investigated by combining experiments and simulation. The thermogravimetric-derivative thermogravimetric (TG-DTG) and Reaction force field (ReaxFF MD) results indicate that synergetic effects exist in co-pyrolysis. Compared with the single component pyrolysis, the activation energy of RH and OS in co-pyrolysis was decreased by 15.97% and 17.14% shown by kinetic analysis, respectively. The Pyrolysis-gas chromatography/mass spectrometry (PY-GC/MS) experiments, and simulation products analysis reveal that more bio-oil and molecules with low molecular weight were produced during the co-pyrolysis process. The synergetic effect mechanism was studied by detecting the variation of free radical intermediates. The results show that hydroxyl radicals from RH pyrolysis reduced cracking temperature of OS, and the hydrogen radicals from OS pyrolysis increased the degree of ring-splitting of RH. The study explores an approach to identify the synergetic effect and reveal the mechanism of co-pyrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call