Abstract
We systemically investigated the transformation behavior of 2,4-dichlorophenol (24-DCP) in seven different reaction systems including KMnO4, heat/PS, O3, UV, Fenton, NaClO and K2FeO4 treatment. The results revealed that complete removal of 24-DCP could be reached in minutes, especially for Fe(VI), KMnO4, NaClO, Fenton and O3 system. A total of 41 products were identified by LC-MS, and 10 of them were validated using commercial and self-synthesized standards. Hydroxyl substitution and coupling reactions were commonly observed in the studied systems. Meanwhile, extra routes such as sulfate substitution, (de)chlorination and direct oxidation were also involved for certain oxidation methods. Comparisons showed that a high degree of chlorination (>90%) occurred for NaClO system, while coupling products accounted for ~45% of the removed 24-DCP under PS oxidation. Moreover, low mineralization degree together with high aquatic toxicity was attributed to the occurrence of coupling reaction, which was possibly related to the redox potential of the main oxidative species. Considering the low abundance of coupling products and the gentle reaction condition, UV irradiation is a better option for 24-DCP removal in water and wastewaters. These findings can deepen our understanding on the transformation process of 24-DCP and provide some useful information for the environmental elimination of substituted phenols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.