Abstract
A study was undertaken to identify which of a range of advanced Wells turbine configurations would maximize wave power productivity. The productivity is estimated of a monoplane with fixed guide vanes, a monoplane with variable-pitch blades, and a high- and low-solidity biplane with counterrotating rotors. Two control mechanisms are investigated for the variable pitch configuration. Raleigh distributions based on a mean annual pneumatic power rating of 500 kW are utilized to generate the short and long-term variations of input power to be matched with experimental turbine performance data obtained from a steady-state test rig. It was found that productivity was relatively insensitive to turbine configuration but that a low-solidity counterrotating turbine had the best performance characteristic providing high peak efficiency and gradual onset of stall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.