Abstract

Productivity is the property that finite prefixes of an infinite constructor term can be computed using a given term rewrite system. Hitherto, productivity has only been considered for orthogonal systems, where non-determinism is not allowed. This paper presents techniques to also prove productivity of non-orthogonal term rewrite systems. For such systems, it is desired that one does not have to guess the reduction steps to perform, instead any outermost-fair reduction should compute an infinite constructor term in the limit. As a main result, it is shown that for possibly non-orthogonal term rewrite systems this kind of productivity can be concluded from context-sensitive termination. This result can be applied to prove stabilization of digital circuits, as will be illustrated by means of an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.