Abstract

ABSTRACTThe stand basal area, carbon isotope discrimination (Δ) in tree rings and leaves, leaf area index and leaf traits of trees were measured in 6‐ to 8‐year‐old stands of Eucalyptus globulus Labill. across a gradient of rainfall of 600–1400 mm year−1 in south‐western Australia to better understand the importance of leaf traits and gas‐exchange as determinants of stand productivity. Δ ranged from 17‰ to 21‰. Δ and basal area were highly, positively correlated with each other and the ratio of mean annual rainfall to potential evaporation (P/PE). Leaf area index, soil water holding capacity and leaf nitrogen content were only weakly correlated with basal area. Δ and P/PE were negatively correlated with leaf nitrogen content. Δ was negatively correlated with leaf density but positively correlated with specific leaf area. This is consistent with the theory that larger leaf nitrogen content and smaller specific leaf area are associated with increased photosynthetic capacity and increased leaf‐scale water‐use‐efficiency, and that Δ is influenced by mesophyll conductance. It is concluded that canopy conductance is a more important determinant of growth in water‐limited conditions than either leaf area index or leaf traits in fertilized stands of E. globulus. Water availability was dictated more by rainfall than soil type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.