Abstract

This study investigates paleoenvironmental changes during the Eocene–Oligocene transition (EOT) at Deep Sea Drilling Project (DSDP) Site 511 (South Atlantic), as inferred from lipid biomarker (long-chain diols, alkenones) and calcareous nannofossil accumulation rates, as well as changes in sedimentation regime (i.e. relative contributions of total organic carbon-TOC-, calcium carbonate, and biogenic silica). Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index UK′37 indicate a progressive but significant cooling (~8°C) from 34.5Ma to 33.6Ma, consistent with estimates derived from other temperature proxies (TEX86; δ18O) at the same site and for the same time interval. This cooling is associated with a marked increase in primary productivity, as indicated by high accumulation rates of biogenic silica, TOC, alkenones, long-chain diols, and calcareous nannofossils. Together, these results are consistent with an enhancement of upwelling conditions favorable to the development of siliceous organisms at DSDP Site 511, possibly induced by the Oi-1 glaciation in Antarctica that occurred during this period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.