Abstract
The analysis of the accumulation and export of nutrients by the cowpea crop is fundamental for a more sustainable fertilization program, because the definition of the doses of organic fertilizers based only on the estimated maximum yield does not guarantee the maintenance of soil fertility. The objective of this study was to evaluate the effect of fertilization with chicken manure on the productivity, accumulation and exportation of nutrients by the pods of cowpea. A randomized block design was used, with five doses of chicken manure (0; 5; 10; 20 and 40 t ha-1) and four repetitions. The highest levels of P and Mg were found in the leaves with the application of 40 t ha-1 of manure. The maximum pod length was 14.47 cm, estimated with the dose of 33.33 t ha-1 of manure. The highest values of diameter, number of pods per plant and pod productivity were observed at the highest dose of manure applied. In relative terms, that is, total exported in relation to the total extracted by the aerial part, phosphorus is the nutrient most exported by the pods, on average 58%, followed by N (55%), K (43%), Mg (40%), S (38%) and Ca (17%). At the highest dose, although Ca accumulation occurred in large quantities (31.3 kg ha-1), only 13% of it was exported by the pods. Fertilizing cowpea with chicken manure supplied essential nutrients and increased pod yield from 7.2 (no fertilization) to 16.3 t ha-1 (fertilization with 40 t ha-1 of chicken manure). The plant remains of the cowpea constitute an important source of nutrients, being obtained at the highest dose of manure applied (40 t ha-1) the following amounts of macronutrients (kg ha-1): N (51.4); P (5.1); K (27.6); Ca (27.1); Mg (8.2); S (5.1), which may return to the soil, with the incorporation of the plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.