Abstract

Hydrogen is usually locked in energy-rich organic compounds and there is almost no pure hydrogen in nature. Organic compounds produced in reservoirs of hydrogen and carbon are an important source of hydrogen production. Understanding the productivity characteristics reservoirs of hydrogen and carbon is the important step to ensure adequate hydrogen energy. This study analyzes the production of hydraulically fractured organic reservoir of hydrogen and carbon. First, based on the diffusion mechanism in reservoir matrix, a multi-scale dual-porosity medium model of reservoir of hydrogen and carbon is established. Then, the mathematical model is solved and verified through a historical matching of field gas production data. Finally, parameter analysis was performed to determine the key parameters to improve the recovery efficiency in organic reservoir of hydrogen and carbon. Results show that improving fracture permeability can improve gas recovery efficiency of hydrocarbon reservoirs. The matrix desorption can develop natural gas production for a long period. Long sizes of hydraulic fractures have large contact surfaces for gas diffusion and increase gas generation and cumulative gas production. The proposed model can predict and analyze the production performance of reservoirs of hydrogen and carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call