Abstract

CD8+ T lymphocytes confer significant but ultimately insufficient protection against HIV infection. Here we report that activated neonatal CD8+ T cells can be productively infected in vitro by macrophage-tropic (M-tropic) HIV-1 isolates, which are responsible for disease transmission, whereas they are resistant to T cell-tropic (T-tropic) HIV strains. Physiological activation of CD8-alpha/beta+ CD4- T cell receptor-alpha/beta+ neonatal T cells, including activation by allogeneic dendritic cells, induces the accumulation of CD4 messenger RNA and the expression of CD4 Ag on the cell surface. The large majority of anti-CD3/B7.1-activated cord blood CD8+ T cells coexpress CD4, the primary HIV receptor, as well as CCR5 and CXCR4, the coreceptors used by M- and T-tropic HIV-1 strains, respectively, to enter target cells. These findings are relevant to the rapid progression of neonatal HIV infection. Infection of primary HIV-specific CD8+ T cells may compromise their survival and thus significantly contribute to the failure of the immune system to control the infection. Furthermore, these results indicate a previously unsuspected level of plasticity in the neonatal immune system in the regulation of CD4 expression by costimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.