Abstract
In evolutionary algorithms, the notion of diversity has been adopted from biology and is used to describe the distribution of a population of solution candidates. While it has been known that maintaining a reasonable amount of diversity often benefits the overall result of the evolutionary optimization process by adjusting the exploration/exploitation trade-off, little has been known about what diversity is optimal. We introduce the notion of productive fitness based on the effect that a specific solution candidate has some generations down the evolutionary path. We derive the notion of final productive fitness, which is the ideal target fitness for any evolutionary process. Although it is inefficient to compute, we show empirically that it allows for an a posteriori analysis of how well a given evolutionary optimization process hit the ideal exploration/exploitation trade-off, providing insight into why diversity-aware evolutionary optimization often performs better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.