Abstract
To elucidate mechanisms that regulate Vbeta rearrangement, we generated and analyzed mice with a V(D)J recombination reporter cassette of germline Dbeta-Jbeta segments inserted into the endogenous Vbeta14 locus (Vbeta14(Rep)). As a control, we first generated and analyzed mice with the same Dbeta-Jbeta cassette targeted into the generally expressed c-myc locus (c-myc(Rep)). Substantial c-myc(Rep) recombination occurred in both T and B cells and initiated concurrently with endogenous Dbeta to Jbeta rearrangements in thymocytes. In contrast, Vbeta14(Rep) recombination was restricted to T cells and initiated after endogenous Dbeta to Jbeta rearrangements, but concurrently with endogenous Vbeta14 rearrangements. Thus, the local chromatin environment imparts lineage and developmental stage-specific accessibility upon the inserted reporter. Although Vbeta14 rearrangements occur on only 5% of endogenous TCRbeta alleles, the Vbeta14(Rep) cassette underwent rearrangement on 80-90% of alleles, supporting the suggestion that productive coupling of accessible Vbeta14 segments and DJbeta complexes influence the frequency of Vbeta14 rearrangements. Strikingly, Vbeta14(Rep) recombination also occurs on TCRbeta alleles lacking endogenous Vbeta to DJbeta rearrangements, indicating that Vbeta14 accessibility per se is not subject to allelic exclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.