Abstract
The aim of this study was to evaluate the agro-economic efficiency of intercropping carrot with cowpea-vegetable in relation to the amounts of biomass of Calotropis procera (Ait.) R.Br. (known locally as flor-de-seda) incorporated into the soil, and to different spatial arrangements. The study was carried out under field conditions from August to November of 2014, at the Experimental Farm ‘Rafael Fernandes’ of the Rural Federal University of the Semi-Arid (RFUSA), in Mossoro, in the State of Rio Grande do Norte, Brazil. The experimental design was a randomised complete blocks in a 4 x 3 factorial, consisting of a combination of four different amounts of flor-de-seda biomass incorporated into the soil (20, 35, 50 and 65 t ha-1 of dry matter) and three spatial arrangements for the crop rows (2 x 2, 3 x 3 and 4 x 4). The carrot and cowpea cultivars used were ꞌBrasiliaꞌ and ꞌBRS Itaimꞌ. The characteristics under evaluation in the carrot were total, commercial and classified root production (scrap, short, medium and long). For the cowpea-vegetable, the following were evaluated: number, productivity and dry matter weight of green pods, number of grains per pod, 100-grain weight and yield of green grains. The agro-economic efficiency indices evaluated in the intercropping were: land equivalent ratio for the system and partial land equivalent ratios for the crops, monetary advantage and modified monetary advantage. The greatest agro-economic efficiency with the intercrop system was recorded in the biomass amount of 30 t ha-1 flor-de-seda. The 2 x 2 spatial arrangement resulted in greater system efficiency. The use of flor-de-seda as green manure is economically viable for the farmer when intercrop carrot with cowpea-vegetable.
Highlights
The production of vegetable crops is quite activity present in small farms and important in the introduction of cultivation systems that provides an increased production yields of crops per unit area
There was no significant interaction between the flor-de-seda biomass amounts incorporated into the soil and the spatial arrangements between the component cultures in the studied variables (Table 3)
There was no significant interaction between the amounts of flor-de-seda biomass incorporated into the soil and the spatial arrangements between component cultures for any of the evaluated characteristics (Table 5)
Summary
The production of vegetable crops is quite activity present in small farms and important in the introduction of cultivation systems that provides an increased production yields of crops per unit area Among these farming systems is the intercropping, when performed properly presents economic and biological stability of the agro-ecosystem, as well as efficiency of the use of the available resources: soil, water, light and nutrients (SEDIYAMA; SANTOS; LIMA, 2014). This cultivation system consists of an intermediary system between the monocrop and conditions of natural vegetation, where two or more cultures develops for a certain period of time, not being necessary to be planted at the same time, but which such plants cohabit much of its productive cycle and is practiced mainly by small producers (OLIVEIRA et al, 2013). When it comes to semi-arid northeast, spontaneous plants or exotic with high productive potential of plant biomass have been highlighted as a source of green manure in the state of Rio Grande do Norte, promoting satisfactory results in crop yields
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.