Abstract
Summary The development of unconventional shale-gas formations in North America with horizontal multifractured wells is mature enough to identify production malpractices and abnormal productivity declines generally observed within 18–24 months of initial production. The primary objective of this study is to address all known causes of these productivity declines and to develop a fully coupled geomechanical/flow simulation model to simulate these production conditions. This model mimics the effect of depletion-induced in-situ stress variations on short-term and long-term productivity by taking into account several phenomena, such as stress-dependent matrix and natural-fracture permeability as well as reduction in hydraulic-fracture conductivity caused by proppant crushing, deformation, embedment, and fracture-face creep. Matrix-permeability evolutions, considering the conflicting effects of non-Darcy flow and compaction, have also been accounted for in this model. Numerical solutions for simplified hydraulic-fracture planar geometries are then obtained by use of a finite-element-method scheme. A synthetic case was defined to investigate the effects of each individual phenomenon on short-term and long-term production. Results show that the combined effects of permeability alterations in matrix and natural fractures as well as conductivity losses in hydraulic fractures may result in substantial cumulative-gas-production loss. The model also reproduces familiar field-observed trends, with lower long-term production corresponding to higher drawdowns. This behavior is attributed to the stress-dependent evolution of reservoir permeability and hydraulic-fracture conductivity. The results show that ignoring the effects of any of the previous phenomena results in overestimation of ultimate recovery. Furthermore, it is shown that proper management of pressure drawdown and the penalty for lower initial production rates in unconventional shale-gas reservoirs can yield substantially higher ultimate recovery. The model is fully versatile and allows modeling and characterization of all widely differing (on a petrophysical level) shale-gas formations as well as proppant materials used for the stimulation treatments. This integrated model can be used for optimization of key parameters during the hydraulic-fracture design, for fine tuning production history matching, and especially as a predictive tool for pressure-drawdown management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.