Abstract

Production, uptake, and metabolic effects of cyclic AMP (cAMP) were measured in the bivascularly perfused rat liver in anterograde and retrograde perfusion. Glucagon, cAMP, N 6,2′- O-dibutyryl cAMP and N 6-monobutyryl cAMP were infused into the portal vein (anterograde perfusion), the hepatic vein (retrograde perfusion), or the hepatic artery (anterograde and retrograde perfusion) in order to reach different cell populations. The following results were obtained: (1) cAMP release caused by glucagon was directly proportional to the cell spaces that were accessible via the hepatic artery in anterograde and retrograde perfusion; since the metabolic effects of glucagon were not proportional to the accessible cell spaces, this observation also implies a disproportion between cAMP release and metabolic effects of the hormone; (2) when cAMP and N 6,2′- O-dibutyryl cAMP were given to all liver cells (e.g. when infused into the portal vein), their metabolic effects were qualitatively and quantitatively the same and qualitatively equal to the effects of glucagon; (3) the changes caused by cAMP were a function of the cell spaces that can be reached via the hepatic artery in anterograde and retrograde perfusion; this behaviour contrasts markedly with that of glucagon, whose metabolic effects were practically independent of the accessible cell spaces; and (4) the effects of N 6,2′- O-dibutyryl cAMP and N 6-monobutyryl cAMP were independent of the cell spaces that were accessible via the hepatic artery in anterograde and retrograde perfusion; in this respect their behaviour was equal to that of glucagon. It is apparent that exogenously added cAMP mimicked the metabolic effects of glucagon in the liver only when it was supplied to all liver cells. Since glucagon, N 6,2′- O-dibutyryl cAMP, and N 6-monobutyryl cAMP were able to produce a full response even when given to only 30% of the liver parenchyma, it was concluded that cAMP production under the stimulus of glucagon or in consequence of the metabolic transformation of N 6,2′- O-dibutyryl cAMP and N 6-monobutyryl cAMP occurs in a compartment to which exogenous cAMP has no access. cAMP generated within this compartment is possibly able to diffuse from cell to cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.