Abstract

This paper presents a comprehensive review of the main types of vaccines approaching production technology, regulatory parameters, and the quality control of vaccines. Bioinformatic tools and computational strategies have been used in the research and development of new pharmaceutical products, reducing the time between supposed pharmaceutical product candidates (R&D steps) and final products (to be marketed). In fact, in the reverse vaccinology field, in silico studies can be very useful in identifying possible vaccine targets from databases. In addition, in some cases (subunit or RNA/ DNA vaccines), the in silico approach permits: (I) the evaluation of protein immunogenicity through the prediction of epitopes, (II) the potential adverse effects of antigens through the projection of similarity to host proteins, (III) toxicity and (IV) allergenicity, contributing to obtaining safe, effective, stable, and economical vaccines for existing and emerging infectious pathogens. Additionally, the rapid growth of emerging infectious diseases in recent years should be considered a driving force for developing and implementing new vaccines and reassessing vaccine schedules in companion animals, food animals, and wildlife disease control. Comprehensive and well-planned vaccination schedules are effective strategies to prevent and treat infectious diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call