Abstract

At present, the prefabricated construction industry is in a situation of increasing types of prefabricated components and generally high production costs. A hybrid optimization model considering continuity and discreteness for the production of fabricated concrete members is established to minimize production costs through the analysis of the production characteristics of precast concrete members. Under the premise of fully considering the staffing constraints, process constraints, construction period constraints, process constraints, and special process time limits for component production, the production arrangement and staffing of the components are rationalized and optimized. A discrete differential evolution (DDE) algorithm is introduced for such NP-hard problems. The double genetic chromosome coding mode and the active scheduling decoding method are adopted. Based on the improved POX (Precedence Operation Crossover) cross-evolution method, the global evolution operation is carried out, and an interchange-based local search method and continuous work penalty mechanism are designed to find the global optimal solution. The experimental results verify the practicality and effectiveness of the optimization model and algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.