Abstract

• We study a distributed blocking flowshop scheduling problem. • We present six effective constructive heuristics and an iterated greedy algorithm . • Two different destructions focusing on the problem characteristic are designed. • Three local search procedures based on the various neighbourhood are presented. • The computational experiments prove the effectiveness of presented algorithms. Production scheduling plays an important role in the intelligent decision support system and intelligent optimization decision technology. In the context of the globalization trend, the current production and management may extend from a single factory to a distributed production network. In this paper, we study the distributed blocking flowshop scheduling problem (DBFSP) that is an important generalization of the traditional blocking flowshop scheduling problem in the distributed environment. Six constructive heuristics and an iterated greedy (IG) algorithm are proposed to minimize the makespan, which provides procedures for obtaining efficient and effective solutions to make decision-making sounder. The first five heuristics are developed based on the well-known NEH2 heuristic [B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling problem, Computers & Operations Research, 37 (4) (2010) 754–768.] and the last heuristic is presented by extending the PW heuristic [Q.K. Pan, L. Wang, Effective heuristics for the blocking flowshop scheduling problem with makespan minimization, Omega, 40 (2) (2012) 218–229.] to DBFSP in an effective way. The composite heuristics that combining constructive heuristics and local searches are also studied. The proposed composite heuristics are chosen to generate an initial solution with a high level of quality. Keeping the simplicity of the IG algorithm, three local search procedures, two destruction procedures, an improved reconstruction procedure, and a simulated annealing-like acceptance criterion are well designed based on the problem-specific knowledge to enhance the IG algorithm. The computational experiments are carried out based on the 720 benchmark instances from the literature. The results show that the proposed heuristics are very effective for solving the problem under consideration and the presented IG algorithm performs significantly better than the other state-of-the-art metaheuristics from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call