Abstract

Cellulose nanocrystals (CNCs) are bio-based, high aspect ratio nanoparticles that are industrially produced in tonne-per-day quantities across the globe. CNCs can be used to improve the performance of a large range of materials such as emulsions and foams, biomedical devices, electronics and sensors, high-viscosity fluids and polymer composites. Their ability to do so, however, is highly dependent on the way they are produced. In this Review, we assess the properties of CNCs from more than 30 production routes and 40 biomass sources to help CNC users select the right material for their desired application. CNCs produced by various methods are evaluated against three target properties: colloidal stability, size and crystallinity index. Alternative production routes and/or starting materials are suggested to overcome challenges associated with CNC use, including increasing compatibility with hydrophobic materials, resistance to thermal degradation and colloidal stability in high ionic strength environments. Additionally, we discuss industrial production of CNCs, as well as considerations for increasing the yield and reducing the environmental impact of these processes. Overall, this Review guides researchers and CNC users towards a deeper understanding of how production processes can be modified to control CNC properties and subsequently tailor their performance. Cellulose nanocrystals are rigid rod-shaped nanoparticles that show promise as additives in composites, emulsions, foams and biomedical devices and as rheological modifiers. In this Review, the authors guide end users towards selecting cellulose sources and production routes that optimize the performance of cellulose nanocrystals in their intended application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.