Abstract

The yield of marine red yeast polysaccharide (MRYP) obtained from Rhodosporidium paludigenum was increased by optimizing fermentation conditions, and the pure polysaccharide was extracted by column chromatography. The molecular weight of pure MRYP and the ratio of mannose to glucose in components of MRYP were determined. Antioxidant and antibacterial abilities of MRYP were investigated in vitro and in vivo. The optimal fermentation parameters were as follows: Medium 4, pH = 6.72, temperature = 30.18°C, blades speed = 461.36 r/min; the optimized yield reached 4323.90 mg/L, which was 1.31 times the original yield. The sequence of factors that affected the MRYP yield was the blades speed>pH>temperature. The main components of MRYP were MYH-1 and MYH-2. The molecular weights of MYH-1 and MYH-2 were 246.92 kDa and 21.88 kDa, respectively; they accounted for 53.60% and 28.75% of total polysaccharide. In MYH-1 and MYH-2, the proportion of glucose and mannose accounted for 46.94%, 38.46%, and 67.10%, 7.17%, respectively. In vitro, the ability of scavenging DPPH•, •OH, and radical was 32.26%, 24.34%, and 22.09%; the minimum inhibitory concentration (MIC) of MRYP was 480 μg/mg. In vivo, MRYP improved the lambs’ body weight, antioxidant enzyme activity, and the number of probiotics, but it reduced the feed/gain (F/G) ratio and the number of pathogenic bacteria in 60-days-old lambs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call