Abstract

Extracellular protease production by a novel strain, Bacillus sp. EBTA6, has been optimized by using central composite design of response surface methodology and properties and industrial applications of crude enzyme have been investigated. Three independent variables (temperature, pH and yeast extract concentration) chosen in the experimental design were significant terms and reduced cubic model fit with the design at p < 0.0001 level. The recommended temperature, pH and yeast extract concentration were 30 °C, 8, and 15 g/L, respectively. Crude enzyme displayed activity over a wide pH and temperature ranges having the optimum at 50–60 °C and pH 8. It was quite stable at high pH values and at 50 °C. Amongst the metal ions (Mg+, Cu2+, Ca2+, Zn2+, K2+, and Sn2+), Ca2+ enhanced the activity and the others either decreased or did not change it. The enzyme activity was reduced by phenyl-methyl-sulfonyl fluoride (PMSF), and ethylene diamine tetra acetic acid (EDTA). The results revealed that the protease was serine alkaline type. Tween 20 and Tween 80 did not inhibit the enzyme, however, sodium dodecyl sulfate (SDS), reduced it by 39%. It completely removed blood stain in 20 min and coagulated milk in the presence of CaCl2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.