Abstract

Open pit mine design optimization under uncertainty is one of the most critical and challenging tasks in the mine planning process. This paper describes the implementation of a minimum cut network flow algorithm for the optimal production phase and ultimate pit limit design under commodity price or market uncertainty. A new smoothing splines algorithm with sequential Gaussian simulation generates multiple commodity price scenarios, and a computationally efficient stochastic framework accommodates the joint representation and processing of the mining block economic values that result from these commodity price scenarios. A case study at an existing iron mining operation demonstrates the performance of the proposed method, and a comparison with conventional deterministic approach shows a higher cumulative metal production coupled with a 48% increase in the net present value (NPV) of the operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.