Abstract

In the present study, the anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) with an electrolyte thin interlayer were manufactured. The anode support tubes consisting of 56 wt% nickel oxide and 44 wt% YSZ (8 mol% yttria (Y2O3) stabilized zirconia (ZrO2)) were produced by using the thermo-extrusion method, whereas the electrolyte and cathode layers were manufactured using the dip-coating method. The half-cells consisting of anode and electrolyte were manufactured by using two different methods. In the first method, the anode-support tubes were pre-sintered at 1200 °C, then covered with the electrolyte layer by using the dip-coating method and then exposed to second sintering at 1400 °C. In the second method, the anode and electrolyte layers were sintered together at 1400 °C (co-sintering) in order to produce the half-cells. The half-cells that were produced and then coated with cathode solutions by using the dip-coating method and the final cells were successfully produced at the end of the sintering at 1150 °C. The porosity and shrinkage percentage values of these MT-SOFCs differed from each other. The power densities of these cells were tested at 700 °C, 750 °C, and 800 °C by using H2 gas as fuel and the results of the microstructural and cost analyses were compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.