Abstract

An alkaline serine protease producing strain Alternaria solani was optimized for its enzyme production under submerged conditions. The maximum production of protease by A. solani was achieved by using sodium nitrate at the optimum concentration of 0.2% w/v. A. solani produced higher quantities (3.75 [unit/mg of protein]) of an inducible extracellular proteases on day 9 after incubation in czapek's dox broth medium amended with 1% casein as an inducer at pH 8.5, temperature 27 °C and 3% sucrose as carbon source. Extracellular proteases were precipitated by ammonium sulphate saturation (80%) method and purified on Sephadex G-100 column chromatography. The molecular mass of SDS-PAGE and Sephadex G-100 Column Gel permeation chromatography purified protease was estimated to 42 kDa. In addition, trypsin digestion of 42 kDa protein band was carried out and analyzed by MALDI-TOF for the identification of protease. The sequence IKELATNGVVTNVK (378-391) segment of the alkaline serine protease was found by using MS/MS spectrum at 1485 m/z from the purified fraction. It showed optimal activity at 50 °C and pH 9-10 and broad pH stability between pH 6-12. The protease activity was inhibited by phenyl methyl sulfonyl fluoride (PMSF), all the results indicated that the presence of a serine residue in the active site and is thus most likely a member of the serine protease family. This may function as a virulence protein during pathogenesis by A. solani. The results suggested that the presence of appreciable extracellular proteolytic activity in filamentous fungi may serve as a marker of their phytopathogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.