Abstract

Observations of OH are a useful proxy of the water production rate (Q(sub H2O)) and outflow velocity (V(sub out)) in comets. We use wide field images taken on 03/28/1997 and 04/08/1997 that capture the entire scale length of the OH coma of comet C/1995O1 (Hale-Bopp) to obtain Q(sub H2O) from the model-independent method of aperture summation. We also extract the radial brightness profile of OH 3080 angstroms out to cometocentric distances of up to 10(exp 6) km using an adaptive ring summation algorithm. Radial profiles are obtained as azimuthal averages and in quadrants covering different position angles relative to the comet-Sun line. These profiles are fit using both fixed and variable velocity two-component spherical expansion models to determine VOH with increasing distance from the nucleus. The OH coma of Hale-Bopp was more spatially extended than in previous comets, and this extension is best matched by a variable acceleration of H2O and OH that acted across the entire coma, but was strongest within 1-2 x 10(exp 4) km from the nucleus. This acceleration led to VOH at 10(exp 6) km that was 2-3 times greater than that obtained from a 1P/Halleytype comet at 1 AU, a result that is consistent with gas-kinetic models, extrapolation from previous observations of OH in comets with Q(sub H2O) > 10(exp 29)/s, and radio measurements of the outer coma Hale-Bopp OH velocity profile. When the coma is broken down by quadrant, we find an azimuthal asymmetry in the radial distribution that is characterized by an increase in the spatial extent of OH in the region between the orbit-trailing and anti-sunward directions. Model fits to this area and comparison with radio OH measurements suggest greater acceleration in this region, with VOH UP to 1.5 times greater at 10(exp 6) km radial distance than elsewhere in the coma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call