Abstract

In this study, WE43 magnesium alloy was produced by the powder metallurgy method. Microstructural analyses of the produced samples were carried out using the scanning electron microscopy method. X-ray fluorescence, energy dispersive x-ray (EDS) analysis, and hardness tests were also implemented to investigate the physical and chemical properties of the alloys. The volumetric hardness was measured to be approximately 53 HV. The microstructural analysis and EDS results indicated the presence of Mg24Y5 and Mg41Nd5 phases in the alloys. Reciprocating-type experiments were carried out in dry and corrosive environments to evaluate the wear resistance. Hanks's solution containing 2% g/l glucose was used as the corrosive environment. Gluconic acid resulting from the oxidation of glucose in the Hanks's solution formed a new thin layer on the alloy surface, which was observed in the worn surface images. The formation of the thin film on the alloy surface resulted in an increase in wear resistance by 37%. The results unraveled the potential of the WE43 alloys as implant materials in areas in contact with glucose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call