Abstract

Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 μg g-1 FW) and high levels of Z11-16OH (111.4 μg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.

Highlights

  • Insect pheromones are a sustainable alternative to broadspectrum pesticides in pest control

  • The total volatile organic compound (VOC) composition was analyzed at 5 days postinfiltration by gas chromatography/mass spectrometry (GC/MS)

  • GC peaks corresponding to the pheromone compounds Z1116OH and Z11-16OAc were detected in samples transformed with all three enzymes, but not with P19 alone (Figure 1(b))

Read more

Summary

Introduction

Insect pheromones are a sustainable alternative to broadspectrum pesticides in pest control. Different pheromonebased pest management approaches can be employed to contain herbivore populations, limiting damage to food, feed, industrial crops, and stored goods. These approaches include multiple strategies, such as (i) attract-and-kill strategies, in which pheromones are used to lure insects into mass traps; (ii) push-pull strategies, in which different stimuli are BioDesign Research used to divert herbivores from crops to alternative hosts; and (iii) mating disruption techniques in which mating is prevented or delayed by providing males with misleading pheromone cues [1,2,3,4]. Pheromone-based pest control approaches are effective against pesticide-resistant insect populations and prevent the emergence of genetic pesticide resistance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call