Abstract

We describe scalable and cost-efficient production of full length, His-tagged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein trimer by Chinese hamster ovary (CHO) cells that can be used to detect SARS-CoV-2 antibodies in patient sera at high specificity and sensitivity. Transient production of spike in both human embryonic kidney (HEK) and CHO cells mediated by polyethyleneiminewas increased significantly (up to 10.9-fold) by a reduction in culture temperature to 32°C to permit extended duration cultures. Based on these data GS-CHO pools stably producing spike trimer under the control of a strong synthetic promoter were cultured in hypothermic conditions with combinations of bioactive small molecules to increase yield of purified spike product 4.9-fold to 53 mg/L. Purification of recombinant spike by Ni-chelate affinity chromatography initially yielded a variety of co-eluting protein impurities identified as host cell derived by mass spectrometry, which were separated from spike trimer using a modified imidazole gradient elution. Purified CHO spike trimer antigen was used in enzyme-linked immunosorbent assay format to detect immunoglobulin Gantibodies against SARS-CoV-2 in sera from patient cohorts previously tested for viral infection by polymerase chain reaction, including those who had displayed coronavirus disease 2019 (COVID-19) symptoms. The antibody assay, validated to ISO 15189 Medical Laboratories standards, exhibited a specificity of 100% and sensitivity of 92.3%. Our data show that CHO cells are a suitable host for the production of larger quantities of recombinant SARS-CoV-2 trimer which can be used as antigen for mass serological testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call