Abstract

Miniature pigs have been recognized as valuable experimental animals in various fields such as medical and pharmaceutical research. However, the amount of information on somatic cell cloning in miniature pigs, as well as genetically modified miniature pigs, is much less than that available for common domestic pigs. The objective of the present study was to establish an efficient technique of cloning miniature pigs by somatic cell nuclear transfer. A high pregnancy rate was achieved following transfer of parthenogenetic (3/3) and cloned (5/6) embryos using female miniature pigs in the early pregnancy period as recipients after estrus synchronization with prostaglandin F2 alpha analog and gonadotrophins. The production efficiency of the cloned miniature pigs using male and female fetal fibroblasts as nucleus donors was 0.9% (2/215 and 3/331, respectively). Cloned miniature pigs were also produced efficiently (7.8%, 5/64) by transferring reconstructed embryos into the uteri of common domestic pigs. When donor cells transfected with the green fluorescent protein (GFP) gene were used in nuclear transfer, the production efficiency of the reconstructed embryos and rate of blastocyst development were comparable to those obtained by non-transfected cells. When transfected cell-derived reconstructed embryos were transferred to three common domestic pig recipients, all became pregnant, and a total of ten transgenic cloned miniature pigs were obtained (piglet production efficiency: 2.7%, 10/365). Hence, we were able to establish a practical system for producing cloned and transgenic-cloned miniature pigs with a syngeneic background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.