Abstract

The use of magnetocaloric material in microelectromechanical energy conversion devices requires freestanding films with smooth surfaces to allow fast and efficient heat transfer. We present and discuss a mechanical method to produce freestanding thick Gadolinium films showing excellent magnetic properties, and high-quality surfaces on both sides. Polycrystalline Gd films have been prepared by sputtering on a silicon substrate with a thermally oxidized layer with different thicknesses. Films have been grown at 543 K. Tantalum and Tungsten have been used as buffer layers because of their corrosion resistance and of their thermal conductivity. The magnetic and surface properties of the freestanding films are presented, with special focus on the role of using different capping layers. Full characterizations of the three freestanding Gd films, including AFM measured surface roughness, XRD patterns, Curie temperature, thermo-magnetic curves, and maximum entropy change, are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call