Abstract

The aim of this research was to optimize the mechanically activated synthesis (MAS) technology of the Cr3C2-Ni powder intended for thermal spraying. The MAS production route included ball milling for 72 h (ball-to-powder ratio 20:1) and sintering under 1075 °C in vacuum for 4 h. Sintered compact was crushed, classified by sieving to obtain the fraction suitable for thermal spraying (20–45 μm). The morphology and the phase composition of the powder were analyzed by a scanning electron microscope (SEM) and X-ray diffraction (XRD). The optimal Cr:C ratio found was 7:1. The powder had an equiaxial or a slightly elongated lamellar shape, Cr3C2 carbides in a single powder particle had an elongated shape. The principal phases in the optimized powder were Cr3C2, Cr7C3 and Ni (Cr) solid solution. Coatings from the manufactured powder were produced by the high velocity oxy-fuel (HVOF) spraying. The abrasive wear tests were carried out according to standard ASTM G65. The wear tests showed that the sprayed coatings from the experimental powder exhibited about five times higher wear rate at abrasive wear conditions than the coatings from the reference commercial powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.