Abstract
We use a self-consistent chiral-hydrodynamic formalism which combines the linear σ model with second-order hydrodynamics in 2 + 1 dimensions to compute the spectrum of thermal photons produced in Au+Au collisions at [Formula: see text]. The temperature-dependent shear viscosity of the model, η, is calculated from the linearized Boltzmann equation. We compare the results obtained in the chiral-hydrodynamic model to those obtained in the second-order theory with a Lattice QCD equation of state and a temperature-independent value of η/s. We find that the thermal photon production is significantly larger in the latter model due to a slower evolution and larger dissipative effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modern Physics: Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.